

SpikingBrain Compared to ChatGPT

Chinese researchers have developed *SpikingBrain-1.0*, a new AI system that replaces the resource-intensive Transformer architecture used in models like ChatGPT. This new model, inspired by the neural mechanisms of the human brain, breaks new ground in *energy-efficient* computing.

Developed by a team at the Institute of Automation of the Chinese Academy of Sciences (CASIA), SpikingBrain-1.0 is a large pulsed neural network. Unlike conventional AI, which relies on ever-larger networks and data, this model enables the development of intelligence from "pulsed neurons," resulting in extremely efficient training.

Image: DigWatch [3]

Spiking Brain 1-0 achieves performance comparable to many free downloadable AI Transformer models while using only about 2 percent of the data required by competitors.

The model's efficiency is particularly evident when processing long data sequences. In one variant, SpikingBrain-1.0 demonstrated a 26.5-fold speedup compared to Transformer architectures when generating the first token from a context containing one million tokens. This makes it ideal for tasks in legal and medical document analysis, high-energy physics, and DNA sequencing.

SpikingBrain-1.0 was trained and derived entirely on the MetaX C550, a Chinese GPU platform. This represents a significant step for China's autonomous AI ecosystem. The researchers have released the model, along with a bilingual technical report, for free download in September 2025.

According to Xu Bo, director of the Institute of Automation, this model opens up "a transformer-free technical path for the new generation of AI development" and could inspire the development of low-power neuromorphic chips.

This success builds on an earlier achievement by the same institute, where it collaborated with Swiss scientists to develop an energy-efficient neuromorphic chip called "Speck" with a remarkably low power consumption of just 0.42 milliwatts. This is a crucial step toward replicating the incredible efficiency of the human brain, which operates on only about 20 watts of power [1].

Significant differences between ChatGPT and SpikingBrain AI's [2]

The following comparison was generated by the Chinese chat.DeepSeek [2] and edited by the author. The core distinction is: ChatGPT is a software-based Large Language Model (LLM) using artificial neurons, while SpikingBrain AI uses physical neuromorphic chips with spiking neurons, the Spiking Neural Network (SNN)

High-Level Analogy

ChatGPT is like a power-hungry, always-on supercomputer that uses massive, continuous calculations to solve problems. It's brilliant but inefficient for certain tasks.

SpikingBrain AI is like a highly efficient, event-driven network (more like the human brain). It stays mostly "quiet" and only computes and communicates when necessary, making it extremely power-efficient.

Summary of Key Differences

Feature ChatGPT (and similar models) SpikingBrain AI (and SNNs)

Core Architecture	Artificial Neural Network (ANN) / Transformer. Uses continuous-valued neurons that fire at every processing cycle.	Spiking Neural Network (SNN). Uses biologically realistic neurons that only "spike" (fire) when a threshold is reached.
Information Encoding	Static, numerical values (vectors of numbers). Information is always present.	Dynamic, temporal sequences (precise timing of spikes). Information is encoded in the timing and rate of pulses.
Operation Mode	Synchronous & Continuous. The entire network is activated for every input, requiring massive parallel computation.	Asynchronous & Event-Driven. Computation is sparse; only specific neurons activate in response to specific input events.
Primary Hardware	General-Purpose Processors (CPUs, GPUs). GPUs are excellent for the massive parallel math required by ANNs.	Neuromorphic Chips (e.g., Intel's Loihi, SpiNNaker). Specialized hardware designed to simulate spiking neurons with extreme efficiency.
Key Strength	Unmatched performance on complex language, reasoning, and generative tasks. Highly versatile and well-understood.	Extreme Energy Efficiency and low latency for real-time, sensory processing (sight, sound). Excels at processing temporal data.
Key Weakness	Extremely high computational cost and power consumption. Requires massive data centers for training and inference.	Challenging to train; traditional backpropagation doesn't translate well. Currently less accurate and capable than ANNs on complex tasks.
Learning Paradigm	Primarily Backpropagation and supervised learning with vast datasets.	Spike-Timing-Dependent Plasticity (STDP) and other biologically plausible rules, often with unsupervised or reinforcement learning.
Best-Suited For	General-purpose chatbots, content creation, code generation, complex reasoning, knowledge synthesis.	Edge AI, robotics, real-time sensor data processing (e.g., vision for drones), brain-computer interfaces, low-power always-on applications.

Detailed Breakdown of Significant Differences

1. Fundamental Architecture & "Neuron" Model

ChatGPT: Uses artificial neurons that output a continuous number (e.g., between 0 and 1) in every forward pass. Think of it as a lightbulb that is always glowing at a certain brightness level.

SpikingBrain AI: Uses spiking neurons that mimic biological neurons. They accumulate input until a threshold is reached, then they fire a discrete "spike" (a pulse), and then reset. Think of it like a binary event: a neuron either "fires" or it doesn't, and the precise timing of that fire is the information.

2. Information Processing & Efficiency

This is the most critical practical difference. ChatGPT is profligate with computation. To generate a single word, it activates its entire 100+ billion parameter network. This is incredibly powerful but also incredibly wasteful from an energy perspective.

SpikingBrain AI is sparse and efficient. Since neurons are mostly silent and only fire when they have something significant to communicate, the vast majority of the network is idle at any given time, leading to massive energy savings—often 100 to 1000 times more efficient than ANNs for specific tasks.

3. Maturity and Capability

ChatGPT represents a mature, highly scaled technology. Its performance on language, reasoning, and creative tasks is state-of-the-art and has been proven at a global scale.

SpikingBrain AI is still largely a research-level technology. While it shows immense promise for efficiency and real-time processing, its performance on complex cognitive tasks like language understanding does not yet rival that of large models like ChatGPT. The training algorithms and hardware are still being actively developed.

Conclusion

In short, the difference is a trade-off between raw performance and biological efficiency.

Choose ChatGPT when you need the highest possible accuracy and capability for tasks like conversation, writing, or coding, and where power consumption is not the primary constraint (e.g., in a cloud data center).

SpikingBrain AI (and SNNs) are being developed for a future where AI needs to run autonomously on small, battery-powered devices (like smartphones, sensors, and robots), processing a constant stream of real-world data with minimal energy use.

ChatGPT and SpikingBrain AI are not direct competitors but rather complementary technologies aimed at solving different classes of problems. ChatGPT is the pinnacle of today's AI; SpikingBrain AI represents a potential path for the sustainable and ubiquitous AI of tomorrow. [2]

References:

[1] China Rundschau, Editor Jessi B /KW38 2025, page 9

and further reading: <https://arxiv.org/pdf/2509.05276>

<https://github.com/BICLab/SpikingBrain-7B>

[2] Deep Seek; <https://chat.deepseek.com/>

[3] Image: <https://dig.watch/updates/china-creates-brain-inspired-ai-model>